Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Geochem Health ; 46(5): 169, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592569

RESUMEN

Density functional theory (DFT) was employed to elucidate the mechanisms for ozonolysis reaction of p-nitrophenol (PNP) and its anion form aPNP. Thermodynamic data, coupled with Average Local Ionization Energies (ALIE) analysis, reveal that the ortho-positions of the OH/O- groups are the most favorable reaction sites. Moreover, rate constant calculations demonstrate that the O3 attack on the C2-C3 bond is the predominant process in the reaction between neutral PNP and O3. For the aPNP + O3 reaction, the most favorable pathways involve O3 attacking the C1-C2 and C6-C1 bonds. The rate constant for PNP ozonolysis positively correlates with pH, ranging from 5.47 × 108 to 2.86 × 109 M-1 s-1 in the natural aquatic environment. In addition, the formation of hydroxyl radicals in the ozonation process of PNP and the mechanisms of its synergistic reaction of PNP with ozone were investigated. Furthermore, the ozonation and hydroxylation processes involving the intermediate OH-derivatives were both thermodynamically and kinetic analyzed, which illustrate that OH radicals could promote the elimination of PNP. Finally, the toxic of PNP and the main products for fish, daphnia, green algae and rat were assessed. The findings reveal that certain intermediates possess greater toxicity than the original reactant. Consequently, the potential health risks these compounds pose to organisms warrant serious consideration.


Asunto(s)
Daphnia , Nitrofenoles , Ozono , Animales , Ratas , Ambiente , Concentración de Iones de Hidrógeno
2.
Small ; : e2311026, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38377298

RESUMEN

Electrochemical hydrogen evolution reaction (HER) from water splitting driven by renewable energy is considered a promising method for large-scale hydrogen production, and as an alternative to noble-metal electrocatalysts, molybdenum carbide (Mo2 C) has exhibited effective HER performance. However, the strong bonding strength of intermediate adsorbed H (Hads ) with Mo active site slows down the HER kinetics of Mo2 C. Herein, using phase-transition strategy, hexagonal ß-Mo2 C could be easily transferred to cubic δ-Mo2 C through electron injection triggered by tungsten (W) doping, and heterointerface-rich Mo2 C-based composites, including ß-Mo2 C, δ-Mo2 C, and MoO2 , are presented. Experimental results and density functional theory calculations reveal that W doping mainly contributes to the phase-transition process, and the generated heterointerfaces are the dominant factor in inducing remarkable electron accumulation around Mo active sites, thus weakening the Mo─H coupling. Wherein, the ß-Mo2 C/MoO2 interface plays an important role in optimizing the electronic structure of Mo 3d orbital and hydrogen adsorption Gibbs free energy (ΔGH* ), enabling these Mo2 C-based composites to have excellent intrinsic catalytic activity like low overpotential (η10 = 99.8 mV), small Tafel slope (60.16 dec-1 ), and good stability in 1 m KOH. This work sheds light on phase-transition engineering and offers a convenient route to construct heterointerfaces for large-scale HER production.

3.
Small ; : e2308459, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38348906

RESUMEN

The development of composites with highly efficient microwave absorption (MA) performance deeply depends on polarization loss, which can be induced by charge redistribution. Considering the fact that polarization centers can be easily obtained in graphene, herein, iron phthalocyanine (FePc) is used as polarization site to coordinate with nitrogen-doped graphene (FePc/N-rGO) to optimize MA performance comprehensively. The factors influencing MA properties focus on the interaction between FePc and N-rGO, and the change of dipole moments. The density functional theory (DFT) results demonstrated that FePc has strong interaction with N defect sites in graphene. The charge loss for FePc and charge accumulation for N-rGO occurred, leading to great increase of dipole moment, and the increased dipole moment can be acted as a descriptor to evaluate the enhanced polarization loss. Due to high charge redistribution capacity of N defect sites and FePc polarization centers, the FePc/N-rGO showed excellent MA properties in C band, and the minimum reflection loss value can reach -49.3 dB at 5.4 GHz with thickness of 3.8 mm. In addition, the fabric loaded with FePc/N-rGO showed good heat dissipation property. This work opens the door to the development of MA performance bound to polarization site with dipole moment.

4.
J Colloid Interface Sci ; 652(Pt B): 2017-2028, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37696056

RESUMEN

Downsizing the electrochemically active materials in both cathodic and anodic electrodes commonly brings about enhanced lithium-ion storage performances. It is particularly meaningful to explore simplified and effective strategies for exploiting nanosized electrode materials in the advanced lithium-ion batteries. In this work, the spontaneous reaction between few-layered graphene oxide (GO) and metallic cobalt (Co) foils in mild hydrothermal condition is for the first time employed to synthesize a reduced graphene oxide (RGO) supported nanosized cobalt monoxide (CoO) anode material (CoO@RGO). Furthermore, the CoO@RGO sample is converted to nanosized lithium cobalt oxide cathode material (LiCoO2, LCO) by taking the advantages of the self-templated effect. As a result, both the CoO@RGO anode and the LCO cathode exhibit inspiring lithium-ion storage properties. In half-cells, the CoO@RGO sample maintains a reversible capacity of 740.6 mAh·g-1 after 300 cycles at the current density of 1000 mA·g-1 while the LCO sample delivers a reversible capacity of 109.1 mAh·g-1 after 100 cycles at the current density of 100 mA·g-1. In the CoO@RGO//LCO full-cells, the CoO@RGO sample delivers a reversible capacity of 553.9 mAh·g-1 after 50 cycles at the current density of 200 mA·g-1. The reasons for superior electrochemical behaviors of the samples have been revealed, and the strategy in this work can be considered to be straightforward and effective for engineering both anode and cathode materials for lithium-ion batteries.

5.
Inorg Chem ; 62(26): 10241-10248, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37339011

RESUMEN

A targeted defect-induced strategy of metal sites in a porous framework is an efficient avenue to improve the performance of a catalyst. However, achieving such an activation without destroying the ordered framework is a major challenge. Herein, a dielectric barrier discharge plasma can etch the Fe(CN)6 group of the NiFe Prussian blue analogue framework in situ through reactive oxygen species generated in the air. Density functional theory calculations prove that the changed local electronic structure and coordination environment of Fe sites can significantly improve oxygen evolution reaction catalytic properties. The modified NiFe Prussian blue analogue is featured for only 316 mV at a high current density (100 mA cm-2), which is comparable to that of commercial alkaline catalysts. In a solar cell-driven alkaline electrolyzer, the overall electrolysis efficiency is up to 64% under real operation conditions. Over 80 h long-time continuous test under 100 mA cm-2 highlights superior durability. The density functional theory calculations confirm that the formation of OOH* is the rate-determining step over Fe sites, and Fe(CN)6 vacancy and extra oxygen atoms can introduce charge redistribution to the catalyst surface, which finally enhances the oxygen evolution reaction catalytic properties by reducing the overpotential by 0.10 V. Both experimental and theoretical results suggest that plasma treatment strategy is useful for modifying the skeletal material nondestructively at room temperature, which opens up a broad prospect in the field of catalyst production.

6.
Chemosphere ; 335: 139062, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37253402

RESUMEN

Degradation of Chlorine-containing disinfection by-products(Cl-DBPs) on surface by electrocatalytic hydrodechlorination (EHDC) is considered a promising advanced water treatment method. Cl-DBPs have ecological toxicity and health risks so that it is urgent to degrade DBPs. We designed and verified the degradation performance of the EHDC of 18 kinds of DBPs (TAAs, TANs, TALs, TNMs, TAcAms, THMs) with different substituents led by the Ti3C2X2(X = O/OH) system by the first-principles. On the surface of Ti3C2(OH)2, DBPs react with atomic hydrogen (*H) by a direct-indirect continuous reduction mechanism to eliminate the Cl atom in turn. Dissociative adsorption of DBPs on the surface of Ti3C2(OH)2 simultaneously realizes the first electron transfer step and forms H vacancy, which makes its electrocatalytic activity superior to that of Ti3C2O2. Removing the six types of DBPs only needs to add -0.1 V of applied potential. In addition, we investigated the impact of substituents and chlorination degree on the reactivity of DBPs removal. The strong electron-withdrawing group is more conducive to the dechlorination reaction. Dehalogenation is much favorable in thermodynamics as the increase in chlorination degree. This study provides important insights and efficient catalysts for the degradation of DBPs and shows the potential of MXenes in eliminating chloride in water.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Cloro/análisis , Cloruros , Contaminantes Químicos del Agua/análisis , Titanio , Halógenos , Desinfección/métodos , Halogenación , Purificación del Agua/métodos
7.
J Hazard Mater ; 452: 131319, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37004446

RESUMEN

Defects engineering in metal oxide is an important avenue for the promotion of VOCs catalytic oxidation. Herein, the influence of crystal facet of Co3O4 is first investigated for the propane oxidation. An intelligent Cu doping is subsequently performed in the most active (110) facet exposed Co3O4 catalyst. The optimized Cu-Co3O4-110-3 catalyst exhibits a prominently enhanced activity with propane conversion rate of 1.9 µmol g-1 s-1 at reaction temperature of 192 °C and the propane mass space velocity of 60,000 mL g-1 h-1, about 2.4 times that of the pristine Co3O4. Systematic experimental characterizations (XAS, EPR, Raman, TPR, XPS, etc.) combined with density functional theory calculations point out that the incorporated Cu could increase the electrophilicity of nearby O atom and implant beneficial defect structures (lattice distortion, coordination unsaturation, abundant oxygen vacancies, etc.), which could significantly activate Co-O bond in Co3O4, leading to the facilitated generation of active oxygen species as well as promoted oxidation ability. This study could set an illuminating paradigm for the boost of the intrinsic oxidation activity by the precise defect construction in Co3O4 catalyst, which will help drive ahead the pursuit of non-precious metal catalyst for VOCs abatement.

8.
Nanomaterials (Basel) ; 12(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35269248

RESUMEN

Although sundry superhydrophobic filtrating materials have been extensively exploited for remediating water pollution arising from frequent oil spills and oily wastewater emission, the expensive reagents, rigorous reaction conditions, and poor durability severely restrict their water purification performance in practical applications. Herein, we present a facile and cost-effective method to fabricate highly hydrophobic onion-like candle soot (CS)-coated mesh for versatile oil/water separation with excellent reusability and durability. Benefiting from a superglue acting as a binder, the sub-micron CS coating composed of interconnected and intrinsic hydrophobic carbon nanoparticles stably anchors on the surface of porous substrates, which enables the mesh to be highly hydrophobic (146.8 ± 0.5°)/superoleophilic and resist the harsh environmental conditions, including acid, alkali, and salt solutions, and even ultrasonic wear. The as-prepared mesh can efficiently separate light or heavy oil/water mixtures with high separation efficiency (>99.95%), among which all the water content in filtrates is below 75 ppm. Besides, such mesh retains excellent separation performance and high hydrophobicity even after 20 cyclic tests, demonstrating its superior reusability and durability. Overall, this work not only makes the CS-coated mesh promising for durable oil/water separation, but also develops an eco-friendly approach to construct robust superhydrophobic surfaces.

9.
Chemosphere ; 291(Pt 3): 133034, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34822870

RESUMEN

Chlorine-based advanced oxidation processes (AOPs) have been extensively studied to remove contaminants through generating HO• and reactive chlorine species, including ClO• and Cl•. In this work, 2,4,6-tribromoanisole (246TBA) and 2,4,6-tribromophenol (246TBP) were selected as model to investigate the reaction mechanisms and micro-kinetics of brominated contaminants with HO•, ClO• and Cl• in chlorine-based AOPs. Also, the apparent degradation kinetics of two compounds were simulated at pH 3.0-9.5 under UV/H2O2, UV/chlorine and UV/NH2Cl. Calculated results showed that neutral 246TBA and 246TBP exhibited similar reactivity to HO• and ClO•, which was different from anionic 2,4,6-tribromophenolate (246TBPT): radical adduct formation (RAF) and H atom abstraction (HAA) were predominant mechanisms for the HO• and ClO• initiated reactions of 246TBA and 246TBP, while RAF and single electron transfer (SET) for 246TBPT; the reaction rate constants of 246TBA and 246TBP with HO• and ClO• were lower than 107 M-1 s-1, and such rate constants dramatically increased to 1010 M-1 s-1 once 246TBP was deprotonated to 246TBPT. The apparent degradation kinetics of 246TBA at pH 3.0-9.5 was simulated in the order of UV/NH2Cl > UV/chlorine > UV/H2O2, and UV/chlorine and UV/NH2Cl were more effective for the removal of 246TBP and 246TBPT than UV/H2O2. UV and/or Cl• dominated 246 TBA degradation under three AOPs. The main radicals mediating 246TBP and 246TBPT degradation are respectively HO• under UV/H2O2, ClO• under UV/chlorine, and HO• and Cl• under UV/NH2Cl. The transformation products of 246TBA, 246TBP and 246TBPT, especially methoxylated and hydroxylated polybrominated diphenyl ethers (MeO-PBDEs and HO-PBDEs), were still toxic pollutants.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Peróxido de Hidrógeno , Cinética , Oxidación-Reducción , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis
10.
Life Sci ; 287: 120103, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34743944

RESUMEN

BACKGROUND: Heroin is a semi-synthetic opioid that is commonly abused drugs in the world. It can cause hepatic injury and lead to multiple organs dysfunction to its addicts. Only a few reports exist on the metabolic changes and mechanisms in the liver of heroin-addicted mice with hepatic injury. METHODS: Twelve adult male Kunming mice (30-40 g) were divided into two groups randomly. The mice in the heroin-addicted group were injected subcutaneously in the first ten days with an increased dosage of heroin from 10 mg/kg to 55 mg/kg. The dosage was then stabilized at 55 mg/kg for three days. The control group was injected with the same amount of saline in the same manner. The hepatic injury was confirmed through the combination of histopathological observation and aminotransferase (AST) and alanine aminotransferase (ALT) determination. The withdrawal symptoms were recorded and used for assessment of heroin addiction. Eventually, liver metabolic biomarkers of heroin-addicted mice with hepatotoxicity were measured using UHPLC-MS/MS. RESULTS: Biochemical analysis and histopathological observation showed that heroin-addicted mice had a liver injury. The liver metabolites of heroin-addicted mice changed significantly. Metabonomics analysis revealed 41 metabolites in the liver of addicted heroin mice as biomarkers involving 34 metabolic pathways. Among them, glutathione metabolism, taurine and hypotaurine metabolism, vitamin B2 metabolism, riboflavin metabolism, and single-carbon metabolism pathways were markedly dispruted. CONCLUSIONS: Heroin damages the liver and disrupts the liver's metabolic pathways. Glutathione, taurine, riboflavin, 4-pyridoxate, folic acid, and methionine are important metabolic biomarkers, which may be key targets of heroin-induced liver damage. Thus, this study provides an in-depth understanding of the mechanisms of heroin-induced hepatotoxicity and potential biomarkers of liver damage.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Dependencia de Heroína/metabolismo , Heroína/toxicidad , Hígado/metabolismo , Metabolómica/métodos , Fenotipo , Animales , Animales no Consanguíneos , Biomarcadores/sangre , Biomarcadores/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Dependencia de Heroína/sangre , Dependencia de Heroína/patología , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones
11.
J Hazard Mater ; 416: 126250, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492993

RESUMEN

The research on the mechanisms and kinetics of radical oxidation in peracetic acid-based advanced oxidation processes was relatively limited. In this work, HO• and organic radicals mediated reactions of acetaminophen (ACT) were investigated, and the reactivities of important organic radicals (CH3COO• and CH3COOO•) were calculated. The results showed that initiated reaction rate constants of ACT are in the order: CH3COO• (5.44 × 1010 M-1 s-1) > HO• (7.07 × 109 M-1 s-1) > CH3O• (1.57 × 107 M-1 s-1) > CH3COOO• (3.65 × 105 M-1 s-1) >> •CH3 (5.17 × 102 M-1 s-1) > CH3C•O (1.17 × 102 M-1 s-1) > CH3OO• (11.80 M-1 s-1). HO•, CH3COO• and CH3COOO• play important roles in ACT degradation. CH3COO• is another important radical in the hydroxylation of aromatic compounds in addition to HO•. Reaction rate constants of CH3COO• and aromatic compounds are 1.40 × 106 - 6.25 × 1010 M-1 s-1 with addition as the dominant pathway. CH3COOO• has high reactivity to phenolate and aniline only among the studied aromatic compounds, and it was more selective than CH3COO•. CH3COO•-mediated hydroxylation of aromatic compounds could produce their hydroxylated products with higher toxicity.


Asunto(s)
Ácido Peracético , Contaminantes Químicos del Agua , Acetaminofén/toxicidad , Radical Hidroxilo , Cinética , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
12.
Sci Total Environ ; 768: 144733, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33736354

RESUMEN

ClO• and BrO• are newly discovered reactive radicals that contribute to the degradation of micropollutants. However, the research on pollutant degradation by ClO• and BrO• is still lacking. Thus, the mechanism, kinetics, and toxicity of caffeine degradation by HO•, ClO•, and BrO• were computationally studied and compared. Results showed that radical adduct formation (RAF) reaction was dominant for HO•, ClO•, and BrO• initiated reactions of caffeine. The main reaction sites were C5 and C8 of caffeine for HO•, while only the RAF reaction on C8 was prominent for ClO• and BrO•. The initiated reaction rate constants of caffeine by HO•, ClO•, and BrO• were in the order of HO• (5.29 × 109 M-1 s-1) > ClO• (1.40 × 109 M-1 s-1) > BrO• (2.17 × 108 M-1 s-1). The kinetic simulation verified that ClO• played a crucial role in the degradation of caffeine by the UV/chlorine process. In addition to HO-adducts, the subsequent reaction mechanisms of ClO- and BrO-adducts have also been investigated. The formation mechanisms of several important products, namely dimethylparabanic acid (P2), di(N-hydroxymethyl) parabanic acid (P5), 1,3,7-trimethyluric acid (P6), and 8-oxocaffeine (P11), were elucidated. Remarkably, stable chlorinated and brominated intermediates or products were not generated in ClO•- and BrO•-mediated subsequent degradations of caffeine. The assessment of aquatic toxicity and health effects showed that caffeine could penetrate the blood-brain barrier (human), and caffeine and its degradation products were potentially harmful to the aquatic environment.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Cafeína , Cloro , Humanos , Cinética , Modelos Teóricos , Oxidación-Reducción , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis
13.
J Hazard Mater ; 402: 123473, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32711383

RESUMEN

The rational comprehension on the catalytic mechanism and pathways of chlorinated volatile organic compounds (CVOCs) oxidation is meaningful for the design of high performance catalytic materials. Herein, we attempted to elucidate the catalytic mechanism and pathways of 1, 2-dichloropropane (1, 2-DCP) oxidation over LaMnO3 perovskite from experimental and theoretical studies. Experimental results indicate that the initial dechlorination of 1, 2-DCP into allyl chloride (AC) can be readily achieved over LaMnO3, while the further decomposition of AC is more vulnerable to be affected by the reaction conditions and strongly dependent on the surface active oxygen species. Density functional theory (DFT) calculation reveals that the heterogeneous conversion of 1, 2-DCP initiates with the chemisorption on the Mn site, followed by the formation of AC via a synergistic mechanism. AC decomposition is considered as the rate-determining step under an inert condition, while the dechlorination of adsorbed 1, 2-DCP dominates the whole reaction under an oxygen atmosphere.

14.
J Hazard Mater ; 401: 123396, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-32763693

RESUMEN

Aromatic compounds (ACs) give a substantial contribution to the anthropogenic emissions of volatile organic compounds. Nitrate radicals (NO3) are significant oxidants in the lower troposphere during nighttime, with concentrations of (2-20) × 108 molecules cm-3. In this study, the tropospheric gas and liquid phase reactions of ACs with nitrate radical are investigated using theoretical computational methods, which can give a deep insight into the reaction mechanisms and kinetics. Results show that the reactivity of ACs with nitrate radicals decreases as the electron donating characteristics of the functional group on the ACs decrease, as ΔG≠ of the reaction with NO3 increasing from -1.17 to 17.84 kcal mol-1. The reaction of NO3 towards ACs in the aqueous phase is more preferable, with the atmospheric lifetime 0.07-1281 min. An assessment of the aquatic toxicity of ACs and their degradation products indicated that the risk of their degradation products remains and should be given more attention.

15.
Ecotoxicol Environ Saf ; 204: 110977, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32739673

RESUMEN

Indirect oxidation induced by reactive free radicals, such as hydroxyl radical (HO), sulfate radical (SO4-) and carbonate radical (CO3-), plays an important or even crucial role in the degradation of micropollutants. Thus, the coadjutant degradation of phenacetin (PNT) by HO, SO4- and CO3-, as well as the synergistic effect of O2 on HO and HO2 were studied through mechanism, kinetics and toxicity evaluation. The results showed that the degradation of PNT was mainly caused by radical adduct formation (RAF) reaction (69% for Г, the same as below) and H atom transfer (HAT) reaction (31%) of HO. For the two inorganic anionic radicals, SO4- initiated PNT degradation by sequential radical addition-elimination (SRAE; 55%), HAT (28%) and single electron transfer (SET; 17%) reactions, while only by HAT reaction for CO3-. The total initial reaction rate constants of PNT by three radicals were in the order: SO4- > HO > CO3-. The kinetics of PNT degradation simulated by Kintecus program showed that UV/persulfate could degrade target compound more effectively than UV/H2O2 in ultrapure water. In the subsequent reaction of PNT with O2, HO and HO2, the formation of mono/di/tri-hydroxyl substitutions and unsaturated aldehydes/ketones/alcohols were confirmed. The results of toxicity assessment showed that the acute and chronic toxicity of most products to fish increased and to daphnia decreased, and acute toxicity to green algae decreased while chronic toxicity increased.


Asunto(s)
Carbonatos/toxicidad , Peróxido de Hidrógeno/toxicidad , Fenacetina/toxicidad , Sulfatos/toxicidad , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Crónica , Animales , Carbonatos/química , Chlorophyta/efectos de los fármacos , Daphnia/efectos de los fármacos , Peces , Peróxido de Hidrógeno/química , Iones/química , Iones/toxicidad , Cinética , Modelos Químicos , Oxígeno/química , Fenacetina/química , Sulfatos/química , Agua/química
16.
J Am Chem Soc ; 142(31): 13533-13543, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32650640

RESUMEN

Metal-organic frameworks (MOFs) can act as a platform for the heterogenization of molecular catalysts, providing improved stability, allowing easy catalyst recovery and a route toward structural elucidation of the active catalyst. We have developed a MOF, 1, possessing vacant N,N-chelating sites which are accessible via the porous channels that penetrate the structure. In the present work, cationic rhodium(I) norbornadiene (NBD) and bis(ethylene) (ETH) complexes paired with both noncoordinating and coordinating anions have been incorporated into the N,N-chelation sites of 1 via postsynthetic metalation and facile anion exchange. Exploiting the crystallinity of the host framework, the immobilized Rh(I) complexes were structurally characterized using X-ray crystallography. Ethylene hydrogenation catalysis by 1·[Rh(NBD)]X and 1·[Rh(ETH)2]X (X = Cl and BF4) was studied in the gas phase (2 bar, 46 °C) to reveal that 1·[Rh(ETH)2](BF4) was the most active catalyst (TOF = 64 h-1); the NBD materials and the chloride salt were notably less active. On the basis of these observations, the activity of the Rh(I) bis(ethylene) complexes, 1·[Rh(ETH)2]BF4 and 1·[Rh(ETH)2]Cl, in butene isomerization was also studied using gas-phase NMR spectroscopy. Under one bar of butene at 46 °C, 1·[Rh(ETH)2]BF4 rapidly catalyzes the conversion of 1-butene to 2-butene with a TOF averaging 2000 h-1 over five cycles. Notably, the chloride derivative, 1 [Rh(ETH)2]Cl displays negligible activity in comparison. XPS analysis of the postcatalysis sample, supported by DFT calculations, suggest that the catalytic activity is inhibited by the strong interactions between a Rh(III) allyl hydride intermediate and the chloride anion.

17.
J Colloid Interface Sci ; 579: 723-732, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32668358

RESUMEN

Effectively immobilizing nano-sized electrochemical active materials with a 3D porous framework constituted by conductive graphene sheets brings in enhanced lithium ion storage properties. Herein, a reduced graphene oxide (RGO) supported zinc ferrite (ZnFe2O4) composite anode material (ZnFe2O4/RGO) is fabricated by a simple and effective method. Firstly, redox reaction takes place between the oxygen-containing functional groups on few-layered graphene oxide (GO) sheets and controlled quantity of metallic Zn atoms. ZnO nanoparticles are in-situ nucleated and directly grow on GO sheets. Secondly, the GO sheets are completely reduced by abundant Fe atoms, and corresponding γ-Fe2O3 nanoparticles are formed neighboring the ZnO nanoparticles. In this step, 3D porous RGO supporting framework are constructed with γ-Fe2O3@ZnO nanoparticles effectively encapsulated between the RGO layers. Finally, the well-designed γ-Fe2O3@ZnO/RGO intermediate product undergoes a thermal treatment to allow a solid-state reaction and obtains the ZnFe2O4/RGO composite. At a high current rate of 1.0 A·g-1, the ZnFe2O4/RGO composite exhibits an inspiring reversible capacity of 1022 mAh·g-1 for 500 consecutive cycles as anode material for lithium ion batteries. And the insight into the attractive lithium storage performance has been studied in this work.

19.
ACS Cent Sci ; 6(2): 213-225, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32123739

RESUMEN

Subtype selectivity and functional bias are vital in current drug discovery for G protein-coupled receptors (GPCRs) as selective and biased ligands are expected to yield drug leads with optimal on-target benefits and minimal side-effects. However, structure-based design and medicinal chemistry exploration remain challenging in part because of highly conserved binding pockets within subfamilies. Herein, we present an affinity mass spectrometry approach for screening herbal extracts to identify active ligands of a GPCR, the 5-HT2C receptor. Using this method, we discovered a naturally occurring aporphine 1857 that displayed strong selectivity for activating 5-HT2C without activating the 5-HT2A or 5-HT2B receptors. Remarkably, this novel ligand exhibited exclusive bias toward G protein signaling for which key residues were identified, and it showed comparable in vivo efficacy for food intake suppression and weight loss as the antiobesity drug, lorcaserin. Our study establishes an efficient approach to discovering novel GPCR ligands by exploring the largely untapped chemical space of natural products.

20.
Chem Commun (Camb) ; 56(4): 619-622, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31833495

RESUMEN

Highly Li+-conductive HfNb24O62 is explored as a new intercalation-type niobium-based oxide anode material for superior Li+ storage. HfNb24O62 owns a Wadsley-Roth shear structure with a large unit-cell volume, leading to a large Li+ diffusion coefficient. HfNb24O62 shows a large capacity, safe operating potential, high rate performance and good cyclability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...